Abstract
Apis mellifera, crucial pollinators for both native and cultivated plants, also yield various products such as honey, wax, royal jelly, and propolis, extensively utilized in the food, pharmaceuticals, and cosmetics industries. Nosema ceranae, a prevalent microsporidian worldwide, stands as a significant pathogen for A. mellifera, showing resistance to conventional antibiotics. Consequently, the exploration of novel compounds for N. ceranae control becomes imperative. Dithiocarbimate derivatives emerge as promising antifungal candidates under evaluation for combating various pathogens, particularly those affecting plants. This study assessed the toxicity profile of six dithiocarbimate derivatives on A. mellifera worker survival and N. ceranae pathogen. Among these, four compounds exhibited minimal bee mortality and proceeded to further evaluation against N. ceranae. In vitro assays demonstrated their inhibitory effects on spore germination. Remarkably, the most potent compound suppressed N. ceranae spores by 62% at a concentration of 20 µmol L−1in vivo. Thus, these dithiocarbimate derivatives represent promising new antifungal agents for combatting nosemosis in honey bee populations.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.