Abstract
Whole transcriptomes of the rotifer Brachionus plicatilis were analyzed using an Illumina sequencer. De novo assembly was performed with 49,122,780 raw reads using Trinity software. Among the assembled 42,820 contigs, 27,437 putative open reading frame contigs were identified (average length 1235bp; N50=1707bp). Functional gene annotation with Gene Ontology and InterProScan, in addition to Kyoto Encyclopedia of Genes and Genomes pathway analysis, highlighted the metabolism of xenobiotics by cytochrome P450 (CYP). In addition, 28 CYP genes were identified, and their transcriptional responses to benzo[α]pyrene (B[α]P) were investigated. Most of the CYPs were significantly upregulated or downregulated (P<0.05) in response to B[α]P, suggesting that Bp-CYP genes play a crucial role in detoxification mechanisms in response to xenobiotics. This study sheds light on the molecular defense mechanisms of the rotifer B. plicatilis in response to exposure to various chemicals.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Comparative Biochemistry and Physiology Part D: Genomics and Proteomics
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.