Abstract

Edible salt is essential to the health of humans and serves as a seasoning universally. Besides chloride, edible salt also contains other anions such as bromide, fluoride, sulfate, and carbonate due to incomplete removal during raw salt refinement. In a household cooking (e.g., soup making) process, a chlorine/monochloramine residual in tap water could react with bromide in edible salt and organic matter in food (e.g., rice, wheat) to form numerous brominated disinfection byproducts (Br-DBPs) at significant levels, which might induce adverse health effects to human beings. In this study, we solicited 20 edible salts of different types (i.e., sea salts, well and rock salts, lake salts, and bamboo salts) from nine countries and determined their bromide levels to be 67–375 mg/kg, with an average level of 173 mg/kg. A total of 25 polar Br-DBPs were detected and identified with structures/formulae in cooking water samples using ultra performance liquid chromatography/electrospray ionization-triple quadruple mass spectrometry (UPLC/ESI-tqMS) and high-resolution mass spectrometry. Effects of cooking conditions (e.g., disinfectant type and level, edible salt dose, organic matter type and dose, sequence and time interval of adding organic matter and salt, etc.) on the formation of polar Br-DBPs were investigated, and optimized cooking conditions with minimized formation of polar Br-DBPs were determined. Further aided with an Hep G2 cell cytotoxicity assay, it was found that the overall cytotoxicity of chlorinated and chloraminated cooking water samples prepared after cooking condition optimization was reduced by 57% and 22%, respectively, compared with those prepared before cooking condition optimization.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.