Abstract

Hepatocellular carcinoma (HCC) exhibits a high degree of invasiveness and is closely associated with rapid disease progression. Multiple lines of evidence indicate a strong correlation between anoikis resistance and tumor progression, invasion, and metastasis. Nevertheless, the classification of anoikis in HCC and the investigation of novel biological target mechanisms in this context continue to pose challenges, requiring further exploration. Combined with HCC samples from TCGA, GEO and ICGC databases, cluster analysis was conducted on anoikis genes, revealing novel patterns among different subtypes. Significant gene analysis of different gene subtypes was performed using WCGNA. The anoikis prognostic risk model was established by Lasso-Cox. Go, KEGG, and GSEA were applied to investigate pathway enrichment primarily observed in risk groups. We compared the disparities in immune infiltration, TMB, tumor microenvironment (TME), and drug sensitivity between the two risk groups. RT-qPCR and Western blotting were performed to validate the expression levels of SLCO4C1 in HCC. The biological functions of SLCO4C1 in HCC cells were assessed through various experiments, including CCK8 assay, colony formation assay, invasion migration assay, wound healing assay, and flow cytometry analysis. HCC was divided into 2 anoikis subtypes, and the subtypeB had a better prognosis. An anoikis prognostic model based on 12 (COPZ2, ACTG2, IFI27, SPP1, EPO, SLCO4C1, RAB26, STC2, RAC3, NQO1, MYCN, HSPA1B) risk genes is important for survival and prognosis. Significant differences were observed in immune cell infiltration, TME, and drug sensitivity analysis between the risk groups. SLCO4C1 was downregulated in HCC. SLCO4C1 downregulation promoted the proliferation, invasion, migration, and apoptosis of HCC cells. The tumor-suppressive role of SLCO4C1 in HCC has been confirmed. Our study presents a novel anoikis classification method for HCC that reveals the association between anoikis features and HCC. The anoikis feature is a critical biomarker bridging tumor cell death and tumor immunity. In this study, we provided the first evidence of SLCO4C1 functioning as a tumor suppressor in HCC.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.