Abstract
Groundwater is an essential water resource utilized for agricultural, industrial, and home applications. Evaluating the variability of groundwater is essential for the conservation and management of this resource, as well as for mitigating the reduction in groundwater levels resulting from excessive extraction. This study aimed to define the groundwater potential zones (GWPZ) in Al-Madinah Al-Munawarah, Western Saudi Arabia, utilizing remote sensing and geographic information system (GIS) techniques, alongside meteorological data. Seven thematic maps were produced based on the regulatory characteristics of geology, drainage density, height, slope, precipitation, soil, and normalized difference vegetation index (NDVI). The influence of each theme and subunit/class on groundwater recharge was evaluated by weighted overlay analysis, including previous research and field data. The groundwater potential map was created via the weighted index overlay approach within a GIS. The groundwater potentials were classified into three categories: very poor, moderate, and good zones. The low groundwater potential regions encompass 805.81 km2 (44.91%) of the research area, located in mountainous basement rocks, characterized by high drainage density and steep gradients. The moderate zones comprise 45.67% of the total area, covering 819.31 km2, and are situated in low-lying regions at the base of mountainous mountains. Conversely, the favorable zones, comprising 9.42% of the total area, span 169.06 km2 and are located within the alluvial deposits of the lowlands next to the Wadi Al-Hamd basin and agricultural farms. The results’ accuracy was confirmed by overlaying data from 26 wells onto the designated groundwater potential categories, revealing that all wells corresponded with regions of high groundwater potential. The generated map would contribute to the systematic and efficient management of groundwater resources in this area to meet the rising water demands of Al-Madinah. The groundwater potential map is one aspect of groundwater management. It is also very important to assess this potential further via groundwater temporal monitoring, groundwater balance, and modeling.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have