Abstract

BackgroundHarvest index (HI) in rice is defined as the ratio of grain yield (GY) to biomass (BM). Although it has been demonstrated that HI is significantly related to yield and is considered as one of the most important traits in high-yielding rice breeding, HI-based high-yielding rice breeding is difficult due to its polygenic nature and insufficient knowledge on the genetic basis of HI. Therefore, searching for rice varieties with high HI and mapping genes associated with high HI can facilitate marker-assisted breeding for high HI in rice.ResultsYuexiangzhan, a popular indica cultivar with good reputation of high HI was crossed with Shengbasimiao, an indica cultivar with lower HI to develop a recombinant inbred line population, and QTL mapping for HI and its component traits was conducted. In total, five QTLs for HI, three QTLs for GY, and six QTLs for BM were detected in two-year experiments. Among the three GY QTLs, one co-located with the HI QTL on chromosome 8, while the other two co-located with the two tightly-linked BM QTLs on chromosome 3. The co-located QTLs in each of the chromosomal regions produced additive effects in the same direction. Particularly, the HI QTL on chromosome 8, qHI-8, could be detected across two years and explained 42.8% and 44.5% of the phenotypic variation, respectively. The existence of qHI-8 was confirmed by the evaluation of the near isogenic lines derived from a residual heterozygous line, and this QTL was delimitated to a 1070 kb interval by substitution mapping.ConclusionIn the present study, the detected GY QTLs overlapped with both HI QTL and BM QTL, suggesting a positive relationship between GY and HI or BM, respectively. With an understanding of the genetic basis for grain yield, harvest index and biomass, it is possible to achieve higher yield through enhancing HI and BM by pyramiding the favorable alleles for the two traits via marker-assisted selection (MAS). As qHI-8 has a large phenotypic effect on HI and expresses stably in different environments, it provides a promising target for further genetic characterization of HI and MAS of high HI in rice breeding.

Highlights

  • Harvest index (HI) in rice is defined as the ratio of grain yield (GY) to biomass (BM)

  • Comparing chromosomal locations of the quantitative trait controlled by multiple genes (QTLs) for GY, HI and BM identified in this study, we found that one GY QTL, qGY-8, co-located with the major HI QTL, qHI-8, in the interval RM447-RM6845 on chromosome 8; they produced their additive effects in the same direction

  • In the present study, a recombinant inbred line (RIL) population derived from a cross betweenYXZ, a popular indica cultivar with good reputation of high HI, and SBSM, an indica cultivar with lower HI, was used for genetic analysis of HI and its component traits

Read more

Summary

Introduction

Harvest index (HI) in rice is defined as the ratio of grain yield (GY) to biomass (BM). Searching for rice varieties with high HI and mapping genes associated with high HI can facilitate marker-assisted breeding for high HI in rice. Using a double-haploid (DH) population of an indica-japonica cross, Hittalmani et al (2003) detected eleven QTLs associated with HI on chromosomes 1, 3, 4, 7 and 8 at nine locations in Asia. Some QTLs associated with HI have been identified, successful marker-assisted breeding for high HI in rice has not been reported. This issue may be attributed to the rice varieties for studies and the complexity of the trait. Screening additional rice varieties with higher HI and identifying stably expressed QTLs with large effect on HI will facilitate marker-assisted breeding for high HI in rice

Methods
Results
Discussion
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.