Abstract

Simple summaryOsteoarthritis is affecting several species including the horse. Transient receptor potential vanilloid 1 (TRPV1)—also known as the ‘chili receptor’—is currently being investigated as a target for treating osteoarthritis in humans. To evaluate whether it could be a potential target in treating osteoarthritis in horses, we collected synovial membrane samples from healthy horse joints and horse joints with joint disease to investigate the expression of the TRPV1. Laboratory analysis showed that TRPV1 is present in horse joints, and that the levels might be elevated in diseased joints, even at a chronic state of disease. This means that TRPV1 could be used as a potential target for osteoarthritis treatment in horses. Future studies in this area will not only be beneficial to horses and their owners, but more knowledge about TRPV1, the mode of action, and possible side effects will also benefit translation into human osteoarthritis research.Joint pain and osteoarthritis (OA) are some of the most common causes of lameness in horses, and most of the available treatments focus on symptomatic relief without a disease-modifying effect. TRPV1 is a potential target for treating joint diseases, including OA, and the present study aims to investigate if the TRPV1 receptor is present in equine articular tissue and determine whether the number of receptors is upregulated in joint inflammation. Metacarpo/metatarsophalangeal (MCP/MTP) joints from 15 horses euthanised for reasons unrelated to this study were included. Based on synovial fluid analysis, macroscopic evaluation, and magnetic resonance imaging (MRI), joints were divided into two groups: healthy joints and joints with pathology. ELISA analysis was performed on synovial tissue harvested from all joints. TPRV1 was found in all joints. The mean concentration of TRPV1 compared to total protein in healthy joints (8.4 × 10−7 ng/mL) and joints with pathology (12.9 × 10−7 ng/mL) differed significantly (p = 0.01, t-test with Welch correction). Quantitative real-time reverse transcriptase PCR analysis was performed on RNA isolates from synovial tissue from all joints. TRPV1 mRNA expression ratio normalized to glyceraldehyde 3-phosphate dehydrogenase (GAPDH) in healthy joints (0.16 (SD: 0.19)) and joints with pathology (0.24 (SD: 0.14)) did not differ significantly (p = 0.43, t-test with Welch correction). mRNA expression of interleukin-6 (IL-6) and tumor necrosis factor alpha (TNF-α) was very low for both groups. In conclusion, TRPV1 was detected both on mRNA and the protein level, with a higher expression of TRPV1 in samples from joints with pathology. Future studies will determine the clinical potential of equine TRPV1 as a target in the management of joint pain and inflammation.

Highlights

  • Joint pain and osteoarthritis (OA) are some of the most commonly reported causes of lameness and retirement in horses

  • The present study demonstrated that transient receptor potential vanilloid 1 (TRPV1) was present as mRNA and protein in the equine synovial membrane in healthy and diseased joints

  • These results are consistent with previous studies, where TRPV1 has been found in synovial tissue from several other species [26,27,28], and in both neural and respiratory tissue in the horse [45]

Read more

Summary

Introduction

Joint pain and osteoarthritis (OA) are some of the most commonly reported causes of lameness and retirement in horses. One study showed that in a population of 797 horses and ponies from. Equine OA is a disease process in synovial joints characterised by the destruction of articular cartilage, subchondral bone sclerosis, and marginal osteophyte formation, often accompanied by joint effusion and synovitis [2,3]. Animals 2020, 10, 506 described aetiology is trauma—either as a single event or as a series of microtrauma. This will induce an inflammatory response, which, in turn, will drive the process of articular cartilage breakdown and remodelling of the surrounding bone [4]. Horses diagnosed with OA are often retired or euthanised

Objectives
Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.