Abstract

Microsensors for gas-phase analytes are fundamentally limited by their inability to discriminate between analytes. While cross-reactive arrays consisting of multiple different sensor elements provide one means to identify individual analytes, these "artificial nose" devices rely on complicated data processing algorithms and they generally suffer from significant zero-point drift. Herein, we present a single component optical sensor that is capable of identifying chemical compounds at parts-per-million concentrations. The device consists of a stack of three mesoporous silicon-based photonic crystals; a porous "drift tube" is sandwiched between two optically responsive layers. The drift layer temporally separates the optical responses of the other layers, and this difference is shown to be characteristic of the analyte.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.