Abstract

Artificial nose has recently become an emerging instrument for quality assurance in the food industry. These paper presents the optical gas sensors based on Magnesium - 5,10,15,20 - tetra phenyl - porphyrin (MgTPP) and Zinc - 5,10,15,20 - tetra phenyl - porphyrin (ZnTPP) thin films and their application as an artificial nose. Based on the measurement of optical absorbance response using a general UV-Vis spectroscopy, this artificial noses was tested to discriminate various volatile organic compounds (VOCs) and Thai beverages. Atomic force microscopy (AFM) and X-rays diffraction were used to confirm the polycrystalline structure of the sensing materials. Density functional theory (DFT) calculations reveal that MgTPP interacts more strongly with the VOCs than ZnTPP, especially with water and methanol. The classification results of VOCs and Thai beverage vapors using the principle component analysis indicate that both MgTPP and ZnTPP-based artificial noses can be an efficient tool for quality assurance of alcoholic beverages.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.