Abstract

Chlamydia trachomatis is an obligate intracellular pathogen that replicates in a host-derived vacuole termed the inclusion. Central to pathogenesis is a type III secretion system that translocates effector proteins into the host cell, which are predicted to play major roles in host cell invasion, nutrient acquisition, and immune evasion. However, until recently, the genetic intractability of C. trachomatis hindered identification and characterization of these important virulence factors. Here, we sought to expand the repertoire of identified effector proteins and confirm they are secreted during C. trachomatis infection. Utilizing bioinformatics, we identified 18 candidate substrates that had not been previously assessed for secretion, of which we show four to be secreted, using Yersinia pseudotuberculosis as a surrogate host. Using adenylate cyclase (CyaA), BlaM, and glycogen synthase kinase (GSK) secretion assays, we identified nine novel substrates that were secreted in at least one assay. Interestingly, only three of the substrates, shown to be translocated by C. trachomatis, were similarly secreted by Y. pseudotuberculosis. Using large-scale screens to determine subcellular localization and identify effectors that perturb crucial host cell processes, we identified one novel substrate, CT392, that is toxic when heterologously expressed in Saccharomyces cerevisiae. Toxicity required both the N- and C-terminal regions of the protein. Additionally, we show that these newly described substrates traffic to distinct host cell compartments, including vesicles and the cytoplasm. Collectively, our study expands the known repertoire of C. trachomatis secreted factors and highlights the importance of testing for secretion in the native host using multiple secretion assays when possible.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.