Abstract
BackgroundThe metalloprotease-disintegrin family, or ADAM, proteins, are implicated in cell-cell interactions, cell fusion, and cell signaling, and are widely distributed among metazoan phyla. Orthologous relationships have been defined for a few ADAM proteins including ADAM10 (Kuzbanian), and ADAM17 (TACE), but evolutionary relationships are not clear for the majority of family members. Human ADAM33 refers to a testis cDNA clone that does not contain a complete open reading frame, but portions of the predicted protein are similar to Xenopus laevis ADAM13.ResultsIn a 48 kb region of mouse DNA adjacent to the Attractin gene on mouse chromosome 2, we identified sequences very similar to human ADAM33. A full-length mouse cDNA was identified by a combination of gene prediction programs and RT-PCR, and the probable full-length human cDNA was identified by comparison to human genomic sequence in the homologous region on chromosome 20p13. Mouse ADAM33 is 44% identical to Xenopus laevis ADAM13, however a phylogenetic alignment and consideration of functional domains suggests that the two genes are not orthologous. Mouse Adam33 is widely expressed, most highly in the adult brain, heart, kidney, lung and testis.ConclusionsWhile mouse ADAM33 is similar to Xenopus ADAM13 in sequence, further examination of its embryonic expression pattern, catalytic activity and protein interactions will be required to assess the functional relationship between these two proteins. Adam33 is expressed in the mouse adult brain and could play a role in complex processes that require cell-cell communication.
Highlights
The metalloprotease-disintegrin family, or ADAM, proteins, are implicated in cellcell interactions, cell fusion, and cell signaling, and are widely distributed among metazoan phyla
Mouse Adam33 We identified Adam33 during the positional cloning of the mouse mahogany mutation, since Adam33 lies on the same bacterial artificial chromosome (BAC) that contains Attractin (Atrn), the gene mutated in mahogany[16]
While analyzing the sequence of a large BAC containing the Attractin locus, we identified a novel member of the ADAM family, Adam33, which was most similar to a partial human cDNA for ADAM33 and to Xenopus laevis ADAM13
Summary
The metalloprotease-disintegrin family, or ADAM, proteins, are implicated in cellcell interactions, cell fusion, and cell signaling, and are widely distributed among metazoan phyla. The metalloprotease-disintegrin family of proteins (called ADAMs, or MDC proteins) consists of over 30 members identified in various species. These proteins are membrane-anchored glycoproteins, named for two of the motifs they carry: adisintegrin domain, and ametalloprotease domain [1]. These domains suggest roles in adhesive interactions, cell fusion, proteolysis and/or intracellular signaling and implicate this family of proteins in numerous biological processes including fertilization, neurogenesis, myoblast fusion, and protein-ectodomain shedding of cytokines and other cell surface proteins [2,3,4,5]. ADAM proteins are implicated in several disease processes, including Alzheimer's disease [13,14]
Published Version (
Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have