Abstract

Geometric errors are one of the primary potential sources of error in a five-axis machine tool. There are two types of geometric errors: position-dependent geometric errors and position-independent geometric errors. A method is proposed to identify and measure the position-independent geometric errors of a five-axis machine tool with a tilting head by means of simultaneous multi-axis controlled movements using a double-ball bar (DBB). Techniques for identifying position-independent geometric errors have been proposed by other researchers. However, most of these are based on the assumption that position-dependent geometric errors (such as linear displacement, straightness, and angular errors) are eliminated by compensation, once the position-independent geometric errors have been identified. The approach suggested in this paper takes into account the effect of position-dependent geometric errors. The position-dependent geometric errors are first defined. Path generation for circle tests with two or three simultaneous control movements is then carried out to measure the position-independent geometric errors. Finally, simulations and experiments are conducted to confirm the validity of the proposed method. The simulation results show that the proposed method is sufficient to accurately identify position-independent geometric errors. The experimental results indicate that the technique can be used to identify the position-independent errors of a five-axis machine tool with a tilting head.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.