Abstract
In the past, uncertainty analysis in soil research was often reduced to consideration of statistical variation in numerical data relating to model parameters, model inputs or field measurements. The simplified conceptual approach used by modellers in calibration studies can be misleading, because it relates mainly to error minimisation in regression analysis and is reductionist in nature. In this study, a large number of added uncertainties are identified in a more comprehensive attention to the problem. Uncertainties in soil analysis include errors in geometry, position and polygon attributes. The impacts of multiple error sources are described, including covariate error, model error and laboratory analytical error. In particular, the distinction is made between statistical variability (aleatory uncertainty) and lack of information (epistemic uncertainty). Examples of experimental uncertainty analysis are provided and discussed, including reference to error disaggregation and geostatistics, and a systems-based analytic framework is proposed. It is concluded that a more comprehensive and global approach to uncertainty analysis is needed, especially in the context of developing a future soils modelling process for incorporation of all known sources of uncertainty.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.