Abstract

By means of several examples from a recent comprehensive space nuclear risk analysis of the Cassini mission, a scenario and consequence representational framework is presented for risk analysis of space nuclear power systems in the context of epistemic and aleatory uncertainties. The framework invites the use of probabilistic models for the calculation of both event probabilities and scenario consequences. Each scenario is associated with a frequency that may include both aleatory and epistemic uncertainties. The outcome of each scenario is described in terms of an end state vector. The outcome of each scenario is also characterized by a source term. In this paper, the source term factors of interest are number of failed clads in the space nuclear power system, amount of fuel released and amount of fuel that is potentially respirable. These are also subject to uncertainties. The 1990 work of Apostolakis is found to be a useful formalism from which to derive the relevant probabilistic models. However, an extension to the formalism was necessary to accommodate the situation in which aleatory uncertainty is represented by changes in the form of the probability function itself, not just its parameters. Event trees that show reasonable alternative accident scenarios are presented. A grouping of probabilities and consequences is proposed as a useful structure for thinking about uncertainties. An example of each category is provided. Concluding observations are made about the judgments involved in this analysis of uncertainties and the effect of distinguishing between aleatory and epistemic uncertainties.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call