Abstract

Monoclonal antibodies (McAbs) were raised against the aggregation factor (AF) from the marine sponge Geodia cydonium. Two clones were identified that secrete McAbs against the cell binding protein of the AF complex. Fab fragments of McAbs: 5D2-D11 completely abolished the activity of the AF to form secondary aggregates from single cells. The McAbs were determined to react with the AF in vitro; this interaction was prevented by addition of the aggregation receptor, isolated and purified from the same species. After dissociation of the AF by sodium dodecyl sulfate and 2-mercaptoethanol, followed by electrophoretical fractionation, a 47-kD protein was identified by immunoblotting which interacted with the McAbs: 5D2-D11. During this dissociation procedure, the sunburst structure of the AF was destroyed. In a second approach, the 47-kD protein was isolated by immunoprecipitation; 12 molecules of this protein species were calculated to be associated with the intact AF particle. The 47-kD AF fragment bound to dissociated Geodia cells with a high affinity (Ka of 7 X 10(8) M-1) even in the absence of Ca++ ions; the number of binding sites was approximately 4 X 10(6)/cell. This interaction was prevented by addition of the aggregation receptor to the 47-kD protein in the homologous cell system. Moreover, it was established that this binding occurs species-specifically. The 47-kD fragment of the AF was localized only extracellularly by indirect immunofluorescence staining in cryostat slices. These data suggest that the 47-kD protein is the cell binding molecule of the AF from Geodia.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.