Abstract

The olive tree is a crop of high socio-economical importance in the Mediterranean area. Sexual reproduction in this plant is an essential process, which determines the yield. Successful fertilization is mainly favored and sometimes needed of the presence of pollen grains from a different cultivar as the olive seizes a self-incompatibility system allegedly determined of the sporophytic type. The purpose of the present study was to identify key gene products involved in the function of olive pollen and pistil, in order to help elucidate the events and signaling processes, which happen during the courtship, pollen grain germination, and fertilization in olive. The use of subtractive SSH libraries constructed using, on the one hand one specific stage of the pistil development with germinating pollen grains, and on the other hand mature pollen grains may help to reveal the specific transcripts involved in the cited events. Such libraries have also been created by subtracting vegetative mRNAs (from leaves), in order to identify reproductive sequences only. A variety of transcripts have been identified in the mature pollen grains and in the pistil at the receptive stage. Among them, those related to defense, transport and oxidative metabolism are highlighted mainly in the pistil libraries where transcripts related to stress, and response to biotic and abiotic stimulus have a prominent position. Extensive lists containing information as regard to the specific transcripts determined for each stage and tissue are provided, as well as functional classifications of these gene products. Such lists were faced up to two recent datasets obtained in olive after transcriptomic and genomic approaches. The sequences and the differential expression level of the SSH-transcripts identified here, highly matched the transcriptomic information. Moreover, the unique presence of a representative number of these transcripts has been validated by means of qPCR approaches. The construction of SSH libraries using pistil and pollen, considering the high interaction between male-female counterparts, allowed the identification of transcripts with important roles in stigma physiology. The functions of many of the transcripts obtained are intimately related, and most of them are of pivotal importance in defense, pollen-stigma interaction and signaling.

Highlights

  • The olive (Olea europaea L.) is an important crop in Mediterranean countries

  • The P(Po) library provided information about those transcripts that are expressed during the pollen tube germination in comparison with the mature pollen grains, within the context of the whole pistil as in this stage, the pistil is full of germinating pollen grains

  • The P(L) library reveals the presence of transcripts in a tissue which is a distinct form from the leaf, being in addition a reproductive tissue

Read more

Summary

Introduction

The olive (Olea europaea L.) is an important crop in Mediterranean countries. The fruit is used for the production of olive oil. Organoleptic properties, quality, fatty acid content and many other parameters are highly dependent on the procedures used for olive oil production, including which olive cultivars are used. Asexual propagation of this tree, achieved by different methods (Böhm, 2013), is the usual practice since its domestication. Olive production relies on the successful achievement of sexual reproduction This plant has been suggested to harbor a self-incompatibility system of the gametophytic type (Cuevas and Polito, 1997; Ateyyeh et al, 2000; Wu et al, 2002), as described for the Oleaceae family (Igic and Kohn, 2001). In the case of the olive, wind is the main factor affecting the yield, as the dispersion of the pollen in olive is mainly anemophylous

Objectives
Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call