Abstract
Larval attachment and metamorphosis are important processes during the development of some marine invertebrates. Myoinhibitory peptides (MIPs), a class of small molecular neuropeptides, have been revealed to be involved in regulating the larval settlement. In this paper, we identified two types of MIP membrane receptors, G-protein coupled receptor SPR and MIP-gated ion channel receptors MGIC1 and MGIC2 based on sequence homology with other species in the transcriptome database of Echiuroidea Urechis unicinctus (Xenopneusta, Urechidae). The results of in situ hybridization showed that positive signals of these receptors were obviously located in the apex of the segmentation larvae, a critical stage of U. unicinctus larval settlement. Further, these receptors were determined on the membrane of HEK293 cells by immunohistochemistry. Also, we verified that U. unicinctus MIP can activate its SPR receptor based on the results of the significantly decreased cAMP concentration in HEK293 cells. Our data will provide scientific reference for elucidating mechanism of neuropeptide regulating the larval attachment and metamorphosis in marine invertebrates.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Comparative biochemistry and physiology. Part B, Biochemistry & molecular biology
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.