Abstract
Bacterial chemotaxis enhances bacterial adaptation to the environment and is important for biofilm formation. Biofilms play a key role in inducing larval settlement and metamorphosis in many marine invertebrates. However, the specific mechanisms by which bacterial chemotaxis influences larval settlement and metamorphosis in mussels remain unknown. The findings indicate that the absence of the chemotaxis gene cheW resulted in reduced motility of Pseudoalteromonas marina, accompanied by an increase in c-di-GMP content. The ΔcheW strain exhibited a higher capacity for biofilm formation compared to the wild-type strain. The extracellular protein content of the ΔcheW strain exhibited a significant 77% reduction, specifically in the flagellin content. The inducing activity of ΔcheW was reduced by 56% compared to the wild-type strain. This study highlights that the deficiency of the chemotaxis gene cheW inhibited larval settlement and metamorphosis in mussels through c-di-GMP regulation of extracellular protein production. It provides a novel ecological function of bacterial chemotaxis in regulating the larval settlement and metamorphosis of marine invertebrates.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have