Abstract

Red ginseng has been gradually discovered to have pharmacological and physiological effects. It is well known that the most important bioactive components of ginseng are ginsenosides. The nootropic effect of ginsenosides from nine different red ginseng extracts was evaluated here. Nine groups of mice were perfused with different concentrations of nine red ginseng extracts, respectively, and two groups of mice with distilled water. The nootropic effect of ginsenosides on mice was evaluated with behavior tests and a biochemical indicator study. The extracts were identified by rapid resolution liquid chromatography coupled with quadrupole-time-of-flight mass spectrome-try(RRLC-Q-TOF-MS). Furthermore, principal component analysis(PCA) was used to analyze the contribution of chemical components from different ginseng groups. The extracts with the most and the weakest effective nootropic were found. It is notable that extract processing is a very important factor to decide pharmacological functions of ginseng extracts. As a conclusion, the most effective extract method for ginsenosides has been found. A panel of 13 ginsenosides has been screened out as chemical markers with nootropic effect, which include high level ginsenosides Ra0, Rb1, Rc, Rb2, Rb3, Re, Rd, and Rg1 and low level ginsenosides mRb1, mRc, mRb2, mRd, and F2. Low level ginsenosides were first time to be discovered as possible nootropic compounds. This method may shed light on fast discovery of bioactive compounds of medicinal plants with low level compounds.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.