Abstract
By using temperature-dependent Hall, variable-frequency capacitance—voltage and cathodoluminescence (CL) measurements, the identification of inductively coupled plasma (ICP)-induced defect states around the AlxGa1-xN/GaN heterointerface and their elimination by subsequent annealing in AlxGa1-xN/GaN heterostructures are systematically investigated. The energy levels of interface states with activation energies in a range from 0.211 to 0.253 eV below the conduction band of GaN are observed. The interface state density after the ICP-etching process is as high as 2.75×1012 cm-2·eV-1. The ICP-induced interface states could be reduced by two orders of magnitude by subsequent annealing in N2 ambient. The CL studies indicate that the ICP-induced defects should be Ga-vacancy related.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have