Abstract
Within invertebrates, the kinin family of neuropeptides is responsible for the modulation of a host of physiological and behavioural processes. In Rhodnius prolixus, kinins are primarily responsible for eliciting myotropic effects on various feeding and diuresis-related tissues. Here, the R. prolixus kinin receptor (RhoprKR) has been identified, cloned and sequenced from the central nervous system (CNS) and hindgut of R. prolixus. Sequence analyses show high similarity and identity between RhoprKR and other cloned invertebrate kinin receptors. The expression profile of RhoprKR shows the RhoprKR transcript throughout the R. prolixus gut, with highest expression in the hindgut, suggesting a role of Rhopr-kinins in various aspects of feeding and digestion. RNA interference (RNAi)-mediated knockdown of the RhoprKR transcript resulted in a significant reduction of hindgut contractions in response to Rhopr-kinin 2 and an Aib-containing kinin analog. dsRhoprKR- injected insects also consumed a significantly larger meal, suggesting a role of Rhopr-kinins in satiety.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have