Abstract
The toxin–antitoxin gene systems (TASs) are present in the genomes of the overwhelming majority of bacteria and archaea. These systems are involved in various cellular regulatory processes (including stress response), and have not been previously investigated in Lactobacilli. We identified 6 putative TASs with toxins belonging to the MazE and RelE superfamilies (PemK1-А1Lrh, PemK2-А2Lrh, PemK3-RelB2Lrh, RelE1Lrh, RelB3-RelE3Lrh, and YefM-YoeBLrh) in the genomes of annotated strains of Lactobacillus rhamnosus. PCR analyses revealed that all systems were found in the genomes of 15 strains of L. rhamnosus isolated from humans in central Russia. These strains were highly heterogeneous with respect to the presence of TASs, as well as their nucleotide and amino acid sequences. In three cases, the relE1 genes contained IS3 elements. TAS heterogeneity may be used to reveal inter-genus differences between strains. Cloning of the toxin genes of 3 TASs inhibited Escherichia coli growth, thus confirming their functionality. Cell growth arrest caused by expression of the toxin genes could be reverted by the expression of a cognate antitoxins. Transcription of toxin–antitoxin loci in L. rhamnosus was shown by RT-PCR.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.