Abstract
Formaldehyde is a key metabolite in methanol assimilation for many methylotrophic microorganisms, and at the same time, it is toxic to all living cells, which means its intracellular concentrations must be tightly controlled. An in-depth understanding of methanol detoxification systems in industrially relevant microorganisms is a prerequisite for the introduction of methanol utilization pathways into their metabolism (synthetic methylotrophy). Bacillus subtilis, an industrial workhorse conventionally used for the production of enzymes, is known to possess two formaldehyde detoxification pathways. Here, we identify a novel formaldehyde dehydrogenase in this bacterium as a path towards creating innovative prospect strategies for strain engineering towards synthetic methylotrophy.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have