Abstract

Cynomorium songaricum is a traditional medicine and also a food material that is eaten raw or processed as tea or beverages. As a featured plant in semi-desert grasslands, C. songaricum is also eaten by the cattle and sheep in the area. This research study fed dairy sheep C. songaricum to determine the flavan-3-ols in sheep milk. Catechin (Cat), epicatechin (Epi), procyanidin A1 (A1), procyanidin A2 (A2), and procyanidin B1 (B1) were detected in sheep milk with the concentration being Epi > A2 > Cat > B1 > A1 at 24 h after the administration of C. songaricum. Neither A1 nor A2 were detected in the methanol extract of C. songaricum. Cysteine degradation of the plant revealed that in addition to Epi, A2 was the extending unit of the polymeric flavan-3-ols in C. songaricum, indicating that A2 is released digestively from the polymers and enters the milk. Procyanidin B-1 was converted to A1 on incubation in raw but not heated milk, indicating that the A1 in milk is the enzymatically transformed product of B1. Accelerated oxidation showed that the flavan-3-ols, B1, Cat, and Epi significantly protects the unsaturated triacyglycerols in the milk from oxidation. The flavan-3-ol could slow down the oxidation of glutathione and the latter may play an important role in preventing the milk triglycerides from oxidation. Flavan-3-ols are polyphenols with many health benefits. The present research revealed the antioxidant activities of flavan-3-ols that could be absorbed to sheep milk, adding new evidences for the values of these flavan-3-ols and for the milk.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call