Abstract

A major portion of ingested procyanidins is degraded by human microbiota in the colon into various phenolic compounds. These microbial metabolites are thought to contribute to the health benefits of procyanidins in vivo. The objective of this study was to identify and quantify the microbial metabolites of procyanidins after anaerobic fermentation with human microbiota. (-)-Epicatechin, (+)-catechin, procyanidin B2, procyanidin A2, partially purified apple and cranberry procyanidins were incubated with human microbiota at a concentration equivalent to 0.5 mM epicatechin. GC-MS analysis showed that common metabolites of all six substrates were benzoic acid, 2-phenylacetic acid, 3-phenylpropionic acid, 2-(3'-hydroxyphenyl)acetic acid, 2-(4'-hydroxyphenyl)acetic acid, 3-(3'-hydroxyphenyl)propionic acid, and hydroxyphenylvaleric acid. 5-(3',4'-Dihydroxyphenyl)-γ-valerolactones and 5-(3'-hydroxyphenyl)-γ-valerolactones were identified as the microbial metabolites of epicatechin, catechin, procyanidin B2, and apple procyanidins but not from the procyanidin A2 or cranberry procyanidin ferments. 2-(3',4'-Dihydroxyphenyl)acetic acid was only found in the fermented broth of procyanidin B2, A2, apple, and cranberry procyanidins. The mass recoveries of microbial metabolites range from 20.0 to 56.9% for the six substrates after 24 h of fermentation. Procyanidins, both B-type and A-type can be degraded by human gut microbiota. The microbial metabolites may contribute to the bioactivities of procyanidins.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call