Abstract

The gene for the human herpes virus 7 (HHV-7) glycoprotein B (gB) has been identified by sequencing a molecularly cloned HHV-7 DNA fragment. A 2.5-kb open reading frame (ORF) encoded a protein of 822 amino acids with characteristics of a transmembrane glycoprotein, and showed the strongest similarity (56.5%) with the human herpesvirus 6 (HHV-6) gB. The genes for the transport/capsid assembly protein ( tp/cap) and the DNA polymerase ( pol) existed upstream and downstream of the gB gene, respectively. This arrangement was the same as that of HHV-6. Antisera were generated by immunizing mice with a glutathione S-transferase-carboxy terminal gB fusion protein. Immunofluorescent tests demonstrated that the antisera reacted specifically with HHV-7 antigens in cytoplasm of infected cells. The antisera immunoprecipitated proteins with apparent molecular masses of 51, 63 and 112 kDa from HHV-7 infected cells by pulse-chase analysis. In the presence of tunicamycin, the protein with a molecular mass of 112 kDa was replaced by a protein with a molecular mass of 88 kDa, and this size was consistent with the predicted size of the primary translation product of the HHV-7 gB gene. These results suggested that the protein with a molecular mass of 112 kDa was a glycoprotein synthesized by addition of N-linked oligosaccharides to a non-glycosylated precursor of the protein with a molecular mass of 88 kDa and then cleaved into the proteins with molecular masses of 51 and 63 kDa in HHV-7 infected cells.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call