Abstract

The genes encoding the glycoproteins H (gH) and L (gL) of human herpesvirus 7 (HHV-7) have been identified. The gH open reading frame (ORF) was 2,070 base pairs in length and encoded a predicted 690 amino-acid protein. The gH contained characteristics of a transmembrane glycoprotein including 10 consensus N-linked glycosylation sites, 12 cysteine residues, a potential amino-terminal signal sequence and a predicted transmembrane segment located near the carboxyl terminus. The gL ORF was 738 base pairs in length and encoded a predicted 246 amino-acid protein. Four possible N-glycosylation sites and 6 cysteine residues existed within gL. The predicted amino-acid sequences of the HHV-7 gH and human herpesvirus 6 variant A (HHV-6A) gH gene products exhibited 23.6% identity to each other; and those of the gL gene products had 26.0% identity. Upon in vitro translation of the gL gene, the addition of microsomal membranes resulted in two modified products with molecular weights of 32 kDa and 35 kDa from the unmodified initial translation product of 26 kDa. An amino-terminal portion of gH and the full length of gL were expressed as glutathione S-transferase fusion proteins, and these proteins were used to raise immune sera in mice. Lysates of cells infected with HHV-7 were subjected to immunoprecipitation analysis. Approximate molecular weights of 33, 37, 80 and 90 kDa polypeptides were immunoprecipitated with antibodies against the gH protein. Antibodies against the gL protein polypeptides with the same molecular weights were also precipitated, and were observed with the antibodies against the gH protein. These results suggest that HHV-7 gH and gL may form a heterodimeric complex with each other in HHV-7 infected cells, as has been reported for other herpesviruses.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.