Abstract
We consider structural equation models (SEMs), in which every variable is a function of a subset of the other variables and a stochastic error. Each such SEM is naturally associated with a directed graph describing the relationships between variables. When the errors are homoscedastic, recent work has proposed methods for inferring the graph from observational data under the assumption that the graph is acyclic (i.e., the SEM is recursive). In this work, we study the setting of homoscedastic errors but allow the graph to be cyclic (i.e., the SEM to be non-recursive). Using an algebraic approach that compares matroids derived from the parameterizations of the models, we derive sufficient conditions for when two simple directed graphs generate different distributions generically. Based on these conditions, we exhibit subclasses of graphs that allow for directed cycles, yet are generically identifiable. We also conjecture a strengthening of our graphical criterion which can be used to distinguish many more non-complete graphs.
Submitted Version (Free)
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Similar Papers
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.