Abstract
Image segmentation algorithms can be modelled as image-guided operators (maps) on the complete lattice of partitions of space, or on the one of partial partitions (i.e., partitions of subsets of the space). In particular region-splitting segmentation algorithms correspond to block splitting operators on the lattice of partial partitions, in other words anti-extensive operators that act by splitting each block independently. This first paper studies in detail block splitting operators and their lattice-theoretical and monoid properties; in particular we consider their idempotence (a requirement in image segmentation). We characterize block splitting openings (kernel operators) as operators splitting each block into its connected components according to a partial connection; furthermore, block splitting openings constitute a complete sublattice of the complete lattice of all openings on partial partitions. Our results underlie the connective approach to image segmentation introduced by Serra. The second paper will study two classes of non-isotone idempotent block splitting operators, that are also relevant to image segmentation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.