Abstract
In two-dimensional magnetic recording, detection for a perfect writer and perfect reader based on an iterative threshold technique are compared to detection employing single threshold and adaptive threshold techniques. The simulation indicates that the algorithm can reach a BER of 9.3% compared to 11.2% and 10.5% for the latter cases when the bit size is 8 by 8 nm with a grain of 8.7 nm diameter. This increases data capacity by 11% to 6.6 TBits/inch2. Additionally, detection with an array of three conventional heads has been studied: the simulation shows that for bits with dimension of 12 × 12 nm, grains of 8.7 nm diameter and reader width of 18 nm, the BER drops from 11.3% for a single conventional head to 5.4% for the head array with a two-dimensional generalized partial response equalizer at the optimum offset of 10 nm. The density is increased by 42%, reaching 4.0 Tbits/Inch2 .
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.