Abstract

The organ transplantation is considered as an effective therapeutic method for organ failure. However, the shortage of donor organ and the immunological rejection are still remained as a big huddle in clinical fields. As an alternative, the tissue-engineering approach for functional organ replacement is extensively studied. The 3D porous scaffolds which guide growth and differentiation of cells are widely utilized as a vital factor with autologotic cells and growth factors for tissue engineering. However, cell necrosis in the center of 3D cell scaffold, due to the insufficient oxygen diffusion is considered as critical limitation for the formation of 3D tissues. Recently, various oxygen delivering/releasing materials have been studied to overcome this limitation. In this study, we developed a perfluorooctane (PFO)-loaded hollow microparticles (PFO-HP) which can allow sustained oxygen delivery for sufficient period, and thus provide appropriate environment for cell survival even in hypoxia. Cell (human periosteum-derived cell, hPDC) behaviors (proliferation, apoptosis, protein synthesis, etc.) in hypoxia (1% O2 and 5% CO2) were evaluated for 28 days. And osteogenic differentiation of cell [alkaline phosphatase (ALP activity), calcium deposition, immunocytochemistry, and RT-PCR (RUNX2, collagen type Ⅰ, osteocalcin, osteonectin)] after 10 days exposure in hypoxic condition was also investigated. New bone formation (histology, CT) of the cell-loaded PFO-HP and PBS-HP was also investigated using a miniature pig (mandibular defect model).

Highlights

  • The 3D porous scaffolds which guide growth and differentiation of cells are widely utilized as a vital factor with autologotic cells and growth factors for tissue engineering

  • We developed a perfluorooctane (PFO)-loaded hollow microparticles (PFO-HP) which can allow sustained oxygen delivery for sufficient period, and provide appropriate environment for cell survival even in hypoxia

  • Cell behaviors in hypoxia (1% O2 and 5% CO2) were evaluated for 28 days

Read more

Summary

Introduction

Dankook University 119, Dandae-ro, Dongnam-gu Cheonan-si, Chungcheongnam- Do 31116, South Korea This article is published with open access by BioMedPress (BMP). The organ transplantation is considered as an effective therapeutic method for organ failure.

Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.