Abstract
Induction heating stress improvement (IHSI) has been used in nuclear power plants to reduce residual stress in welded sections of pipes by generating temperature differences between the inner and outer surfaces of the pipes. The outer metal surface is heated by induction heating, and the inner surface is cooled by flowing water. However, it is difficult to obtain a sufficient temperature gradient in the places where the flow stagnates and the heat transfer cannot be enhanced. In the present study, we developed cooling techniques for a reactor recirculation inlet nozzle with a closed end and very narrow annular channel. Computational fluid dynamics (CFD) analyses, half-scale tests, and full-scale tests were conducted to investigate the flow and cooling characteristics. One million grids of a reactor recirculation inlet nozzle model were used for the CFD analysis. Detached eddy simulation (DES) was used as the turbulence model to evaluate the unsteady phenomena of the jet flow and temperature distribution. The experimental apparatuses used for the half-scale tests were made of acryl to visualize the flow, and heat transfer coefficients were measured at the welded portions. In the full-scale tests, the temperature differences between the inner and outer surface of the recirculation inlet nozzle were measured, and reduction of the residual stress was verified. It was confirmed that the jet flow moved up and down when two jet nozzles were arranged symmetrically. The turbulence due to self-sustained jet fluctuation was effective for uniform cooling in the reactor recirculation inlet nozzle. The flow did not stagnate around the welded portion. The heat transfer coefficients at the welded portion were evaluated using an equation with Reynolds and Nusselt numbers in half-scale tests. It was also verified in full-scale tests that the temperature difference between the inner and outer surfaces of the recirculation inlet nozzle was approximately 490℃, which satisfied the criteria of 446℃.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have