Abstract

Icilin is a transient receptor potential cation channel subfamily M (TRPM8) agonist that produces behavioral activation in rats and mice. Its hallmark overt pharmacological effect is wet-dog shakes (WDS) in rats. The vigorous shaking associated with icilin is dependent on NMDA receptor activation and nitric oxide production, but little else is known about the biological systems that modulate the behavioral phenomenon. The present study investigated the hypothesis that alpha2-adrenoceptor activation inhibits icilin-induced WDS. Rats injected with icilin (0.5, 1, 2.5, 5mg/kg, i.p.) displayed dose-related WDS that were inhibited by pretreatment with a fixed dose of clonidine (0.15mg/kg, s.c.). Shaking behavior caused by a fixed dose (2.5mg/kg) of icilin was also inhibited in a dose-related manner by clonidine pretreatment (0.03–0.15mg/kg, s.c.) and reduced by clonidine posttreatment (0.15mg/kg, s.c.). Pretreatment with a peripherally restricted alpha2-adrenoceptor agonist, ST91 (0.075, 0.15mg/kg), also decreased the incidence of shaking elicited by 2.5mg/kg of icilin. Pretreatment with yohimbine (2mg/kg, i.p.) enhanced the shaking induced by a low dose of icilin (0.5mg/kg). The imidazoline site agonists, agmatine (150mg/kg, i.p.) and 2-BFI (7mg/kg, i.p.), did not affect icilin-evoked shaking. These results suggest that alpha2-adrenoceptor activation inhibits shaking induced by icilin and that increases in peripheral, as well as central, alpha2-adrenoceptor signaling oppose the behavioral stimulant effect of icilin.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call