Abstract

In cold regions, the high occurrence of ice jams results in severe flooding and significant damage caused by a rapid rise in water levels upstream of ice jams. These floods can be critical hydrological and hydraulic events and be a major concern for citizens, authorities, insurance companies and government agencies. In the past twenty years, several studies have been conducted in ice jam modelling and forecasting, and it has been found that predicting ice jam formation and breakup is challenging, due to the complexity of the interactions between the hydroclimatic variables leading to these processes. At this time, several mathematical models have been developed to predict breakup processes. The current methods of breakup prediction are highly empirical and site-specific. The information on the progress of the methods and the variables used to predict the occurrence, severity, and timing of the breakup ice jams still remains limited. This study summarizes the different processes contributing to ice jam formation and breakup, the various existing ice jam prediction models, and their potential and limitations regarding the improvement in ice jam predictions. An overview of the application of artificial neural networks and fuzzy logic systems in ice-related problems is presented. Genetic programming is also explained as a possible mean for ice-related problems. Although genetic programming shows promising results in hydrological modelling, it has not yet been used in ice-related problems. The review of literature highlights that data-driven and machine learning techniques provide promising means in predicting ice jams with better confidence, but more scientific research is needed.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.