Abstract

A previously developed Great Lakes ice forecasting model for winter navigation aid has been calibrated using observed data from specific Lake Erie ice transport events. The model is based on the macroscopic continuum hypothesis for the fragmented ice field and the internal ice stress is represented by a viscous‐plastic type constitutive law. The external driving force includes the time‐dependent wind and water current fields as well as the thermodynamic source/sink terms for the ice mass conservation. By adjusting the model coefficients employed in the constitutive equations and the thermodynamic factors, the computed results are in reasonable agreement with the short‐term observations for the 1978–79 ice season in Lake Erie. Major findings include the profound effects of the wind‐driven water currents and the ice melt at the icewater interface on the ice regime of Lake Erie during the late stage of the ice season.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.