Abstract

In this article, electrostatic discharge (ESD) induced soft failures (SFs) of a USB3 Gen1 device are investigated by direct transmission line pulse injection with varying pulsewidth, amplitude, and polarity to characterize the failure behavior of the interface and to create a SPICE model of the voltage and current waveform dependent failure thresholds. ESD protection by transient-voltage-suppression diodes is numerically simulated in several configurations. The results show viability of using well-established hard failure mitigation techniques for improving SF robustness. A good agreement between numerical simulation for optimized board design and measurements are achieved. A novel concept of SF system efficient ESD design is proposed and demonstrated to be effective for making decisions during early product development, in board designing and prototyping phase.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.