Abstract
We examined the effect of 3-isobutyryl-2-isopropylpyrazolo[1,5-a]pyridine (ibudilast), which has been clinically used for bronchial asthma and cerebrovascular disorders, on cell viability induced in a model of reperfusion injury. Ibudilast at 10 - 100 microM significantly attenuated the H(2)O(2)-induced decrease in cell viability. Ibudilast inhibited the H(2)O(2)-induced cytochrome c release, caspase-3 activation, DNA ladder formation and nuclear condensation, suggesting its anti-apoptotic effect. Phosphodiesterase inhibitors such as theophylline, pentoxyfylline, vinpocetine, dipyridamole and zaprinast, which increased the guanosine-3',5'-cyclic monophosphate (cyclic GMP) level, and dibutyryl cyclic GMP attenuated the H(2)O(2)-induced injury in astrocytes. Ibudilast increased the cyclic GMP level in astrocytes. The cyclic GMP-dependent protein kinase inhibitor KT5823 blocked the protective effects of ibudilast and dipyridamole on the H(2)O(2)-induced decrease in cell viability, while the cyclic AMP-dependent protein kinase inhibitor KT5720, the cyclic AMP antagonist Rp-cyclic AMPS, the mitogen-activated protein/extracellular signal-regulated kinase inhibitor PD98059 and the leukotriene D(4) antagonist LY 171883 did not. KT5823 also blocked the effect of ibudilast on the H(2)O(2)-induced cytochrome c release and caspase-3-like protease activation. These findings suggest that ibudilast prevents the H(2)O(2)-induced delayed apoptosis of astrocytes via a cyclic GMP, but not cyclic AMP, signalling pathway.
Published Version (
Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have