Abstract

The role which Ca(2+)-activated K(+) (K(Ca)) channels play in regulating acetylcholine (ACh) release was examined at mouse motor nerve terminals. In particular, the ability of the antagonist iberiotoxin to recruit normally silent L-type Ca(2+) channels to participate in nerve-evoked release was examined using conventional intracellular electrophysiological techniques. Incubation of cut hemidiaphragm preparations with 10 microM nimodipine, a dihydropyridine L-type Ca(2+) channel antagonist, had no significant effect on quantal content of end-plate potentials. Nevertheless, 1 microM S-(-)-1,4-dihydro-2,6-dimethyl-5-nitro-4-(2-[trifluoromethyl]phenyl)-3-pyridine carboxylic acid methyl ester (Bay K 8644) enhanced quantal content to 134.7 +/- 3.5% of control. Iberiotoxin (150 nM) increased quantal content to 177.5 +/- 9.9% of control, whereas iberiotoxin plus nimodipine increased quantal content to only 145.7 +/- 10.4% of control. Coapplication of 1 microM Bay K 8644 with iberiotoxin did not significantly increase quantal content further than did treatment with iberiotoxin alone. The effects of iberiotoxin and nimodipine alone or in combination on the miniature end-plate potential (MEPP) frequency following KCl-induced depolarization were examined using uncut hemidiaphragm preparations. Nimodipine alone had no effect on MEPP frequency from preparations incubated in physiological saline containing 5 to 20 mM KCl. Moreover, iberiotoxin alone or combined with nimodipine also had no effect on MEPP frequency in physiological salines containing 5 to 15 mM KCl. At 20 mM KCl, however, iberiotoxin significantly increased MEPP frequency to 125.6% of iberiotoxin-free values; combined treatment with nimodipine and iberiotoxin prevented this increase in MEPP frequency. Thus, loss of functional K(Ca) channels unmasks normally silent L-type Ca(2+) channels to participate in ACh release from motor nerve terminals, particularly under conditions of intense nerve terminal depolarization.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.