Abstract
Achieving a comprehensive understanding of animal intelligence demands an integrative approach that acknowledges the interplay between an organism's brain, body and environment. Insects, despite their limited computational resources, demonstrate remarkable abilities in navigation. Existing computational models often fall short in faithfully replicating the morphology of real insects and their interactions with the environment, hindering validation and practical application in robotics. To address these gaps, we present I2Bot, a novel simulation tool based on the morphological characteristics of real insects. This tool empowers robotic models with dynamic sensory capabilities, realistic modelling of insect morphology, physical dynamics and sensory capacity. By integrating gait controllers and computational models into I2Bot, we have implemented classical embodied navigation behaviours and revealed some fundamental navigation principles. By open-sourcing I2Bot, we aim to accelerate the understanding of insect intelligence and foster advances in the development of autonomous robotic systems.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have