Abstract

Oidium heveae HN1106, a powdery mildew (PM) that infects rubber trees, has been found to trigger disease resistance in Arabidopsis thaliana through ENHANCED DISEASE SUSCEPTIBILITY 1 (EDS1)-, PHYTOALEXIN DEFICIENT 4 (PAD4)- and salicylic acid (SA)-mediated signalling pathways. In this study, a typical TOLL-INTERLEUKIN 1 RECEPTOR, NUCLEOTIDE-BINDING, LEUCINE-RICH REPEAT (TIR-NB-LRR)-encoding gene, WHITE RUST RESISTANCE 4 (WRR4B), was identified to be required for the resistance against O. heveae in Arabidopsis. The expression of WRR4B was upregulated by O. heveae inoculation, and WRR4B positively regulated the expression of genes involved in SA biosynthesis, such as EDS1, PAD4, ICS1 (ISOCHORISMATE SYNTHASE 1), SARD1 (SYSTEMIC-ACQUIRED RESISTANCE DEFICIENT 1) and CBP60g (CALMODULIN-BINDING PROTEIN 60 G). Furthermore, WRR4B triggered self-amplification, suggesting that WRR4B mediated plant resistance through taking part in the SA-based positive feedback loop. In addition, WRR4B induced an EDS1-dependent hypersensitive response in Nicotiana benthamiana and contributed to disease resistance against three other PM species: Podosphaera xanthii, Erysiphe quercicola and Erysiphe neolycopersici, indicating that WRR4B is a broad-spectrum disease resistance gene against PMs.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call