Abstract

With the booming of smart home market, intelligent Internet of Things (IoT) devices have been increasingly involved in home life. To improve the user experience of smart homes, some prior works have explored how to use machine learning for predicting interactions between users and devices. However, the existing solutions have inferior User Device Interaction (UDI) prediction accuracy, as they ignore three key factors: routine, intent and multi-level periodicity of human behaviors. In this paper, we present SmartUDI, a novel accurate UDI prediction approach for smart homes. First, we propose a Message-Passing-based Routine Extraction (MPRE) algorithm to mine routine behaviors, then the contrastive loss is applied to narrow representations among behaviors from the same routines and alienate representations among behaviors from different routines. Second, we propose an Intent-aware Capsule Graph Attention Network (ICGAT) to encode multiple intents of users while considering complex transitions between different behaviors. Third, we design a Cluster-based Historical Attention Mechanism (CHAM) to capture the multi-level periodicity by aggregating the current sequence and the semantically nearest historical sequence representations through the attention mechanism. SmartUDI can be seamlessly deployed on cloud infrastructures of IoT device vendors and edge nodes, enabling the delivery of personalized device service recommendations to users. Comprehensive experiments on four real-world datasets show that SmartUDI consistently outperforms the state-of-the-art baselines with more accurate and highly interpretable results.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.