Abstract

Today, the deep learning-based side-channel analysis represents a widely researched topic, with numerous results indicating the advantages of such an approach. Indeed, breaking protected implementations while not requiring complex feature selection made deep learning a preferred option for profiling side-channel analysis. Still, this does not mean it is trivial to mount a successful deep learning-based side-channel analysis. One of the biggest challenges is to find optimal hyperparameters for neural networks resulting in powerful side-channel attacks. This work proposes an automated way for deep learning hyperparameter tuning based on Bayesian optimization. We build a custom framework denoted AutoSCA supporting machine learning and side-channel metrics. Our experimental analysis shows that our framework performs well regardless of the dataset, leakage model, or neural network type. We find several neural network architectures outperforming state-of-the-art attacks. Finally, while not considered a powerful option, we observe that neural networks obtained via random search can perform well, indicating that the publicly available datasets are relatively easy to break.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.