Abstract
BackgroundSpirulina (Arthrospira) platensis is a well-known filamentous cyanobacterium used in the production of many industrial products, including high value compounds, healthy food supplements, animal feeds, pharmaceuticals and cosmetics, for example. It has been increasingly studied around the world for scientific purposes, especially for its genome, biology, physiology, and also for the analysis of its small-scale metabolic network. However, the overall description of the metabolic and biotechnological capabilities of S. platensis requires the development of a whole cellular metabolism model. Recently, the S. platensis C1 (Arthrospira sp. PCC9438) genome sequence has become available, allowing systems-level studies of this commercial cyanobacterium.ResultsIn this work, we present the genome-scale metabolic network analysis of S. platensis C1, iAK692, its topological properties, and its metabolic capabilities and functions. The network was reconstructed from the S. platensis C1 annotated genomic sequence using Pathway Tools software to generate a preliminary network. Then, manual curation was performed based on a collective knowledge base and a combination of genomic, biochemical, and physiological information. The genome-scale metabolic model consists of 692 genes, 837 metabolites, and 875 reactions. We validated iAK692 by conducting fermentation experiments and simulating the model under autotrophic, heterotrophic, and mixotrophic growth conditions using COBRA toolbox. The model predictions under these growth conditions were consistent with the experimental results. The iAK692 model was further used to predict the unique active reactions and essential genes for each growth condition. Additionally, the metabolic states of iAK692 during autotrophic and mixotrophic growths were described by phenotypic phase plane (PhPP) analysis.ConclusionsThis study proposes the first genome-scale model of S. platensis C1, iAK692, which is a predictive metabolic platform for a global understanding of physiological behaviors and metabolic engineering. This platform could accelerate the integrative analysis of various “-omics” data, leading to strain improvement towards a diverse range of desired industrial products from Spirulina.
Highlights
Spirulina (Arthrospira) platensis is a well-known filamentous cyanobacterium used in the production of many industrial products, including high value compounds, healthy food supplements, animal feeds, pharmaceuticals and cosmetics, for example
Spirulina (Arthrospira) platensis is a filamentous nonN2-fixing cyanobacterium that has become important as a source for commercially produced nutraceutical compounds, as this cyanobacterium utilizes sunlight and CO2 to produce chemical compounds that are essential for life
Metabolic model reconstruction Reconstruction of a draft model In order to build a genome-scale metabolic model of S. platensis C1, the genome-scale metabolic network was reconstructed according to a series of extensive refinements (Fig. 1 and see Materials and Methods)
Summary
Spirulina (Arthrospira) platensis is a well-known filamentous cyanobacterium used in the production of many industrial products, including high value compounds, healthy food supplements, animal feeds, pharmaceuticals and cosmetics, for example. It has been increasingly studied around the world for scientific purposes, especially for its genome, biology, physiology, and for the analysis of its small-scale metabolic network. One popular tool for investigating complex stoichiometric metabolic models is the constraint-based reconstruction and analysis (COBRA) toolbox [13,14] with MATLAB This technique relies on linear programming (LP) and a given set of various appropriate constraint parameters known from experiments. Numerous successes have been reported using these methods as the tools to elucidate in silico models (virtual organisms) [15,16,17]
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have