Abstract

This study deals with computational analysis of vibration isolators' behavior, using the fractional-order differential equations (FDE). Numerical investigations regarding the influences of α-fractional derivatives have been mainly focused on the dissipative component within the differential constitutive equation of rheological model. Two classical models were considered, Voigt-Kelvin and Van der Pol, in order to develop analyses both on linear and nonlinear formulations. The aim of this research is to evaluate the operational capability, provided by the α-fractional derivatives within the viscous component of certain rheological model, to enable an accurate response regarding the realistic behavior of elastomeric-based vibration isolators. The hysteretic response followed, which has to be able to assure the symmetry of dynamic evolution under external loads, and at the same time, properly providing dissipative and conservative characteristics in respect of the results of experimental investigations. Computational analysis was performed for different values of α-fractional order, also taking into account the integer value, in order to facilitate the comparison between the responses. The results have shown the serviceable capability of the α-fractional damping component to emulate, both a real dissipative behavior, and a virtual conservative characteristic, into a unitary way, only by tuning the α-order. At the same time, the fractional derivative models are able to preserve the symmetry of hysteretic behavior, comparatively, e.g., with rational-power nonlinear models. Thereby, the proposed models are accurately able to simulate specific behavioral aspects of rubber-like elastomers-based vibration isolators, to the experiments.

Highlights

  • Fractional calculus (FC) studies the differentiation and integration of an arbitrary real or complex order of the differential operator

  • The aim of this research is to evaluate the operational capability, provided by the α-fractional derivatives within the viscous component of certain rheological model, to enable an accurate response regarding the realistic behavior of elastomeric-based vibration isolators

  • The hysteretic response followed, which has to be able to assure the symmetry of dynamic evolution under external loads, and at the same time, properly providing dissipative and conservative characteristics in respect of the results of experimental investigations

Read more

Summary

Introduction

Fractional calculus (FC) studies the differentiation and integration of an arbitrary real or complex order of the differential operator. The starting point of FC’s use was a discussion between Leibniz and. L’Hospital (1695) concerning the calculation and significance of the derivative of the power function, which became the name of FC. The reputation enjoyed by FC is still exotic, and for many researchers, it is still unclear what its practical use is. Fractional derivatives take into account the previous evolution of the variable, unlike the standard differential operator, which is limited to taking into account local time history. This feature allows for a better description of system dynamics [1]

Objectives
Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.