Abstract

Using Langevin dynamics simulations, we study the hysteresis in unzipping of longer double-stranded DNA chains whose ends are subjected to a time-dependent periodic force with frequency ω and amplitude G keeping the other end fixed. We find that the area of the hysteresis loop, A_{loop}, scales as 1/ω at higher frequencies, whereas it scales as (G-G_{c})^{α}ω^{β} with exponents α=1 and β=1.25 in the low-frequency regime. These values are same as the exponents obtained in Monte Carlo simulation studies of a directed self-avoiding walk model of a homopolymer DNA [R. Kapri, Phys. Rev. E 90, 062719 (2014)10.1103/PhysRevE.90.062719], and the block copolymer DNA [R.K. Yadav and R. Kapri, Phys. Rev. E 103, 012413 (2021)2470-004510.1103/PhysRevE.103.012413] on a square lattice, and differs from the values reported earlier using Langevin dynamics simulation studies on a much shorter DNA hairpins.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call