Abstract

We theoretically study an artificial neuron circuit containing a quantum memristor in the presence of relaxation and dephasing. The charge transport in the quantum element is realized via tunneling of a charge through a quantum particle which shuttles between two terminals—a functionality reminiscent of classical diffusive memristors. We demonstrate that this physical principle enables hysteretic behavior in the current-voltage characteristics of the quantum device. In addition, being used in an artificial neural circuit, the quantum switcher is able to generate self-sustained current oscillations. Our analysis reveals that these self-oscillations are triggered only in quantum regimes with a moderate rate of relaxation, and cannot exist either in a purely coherent regime or at a very high decoherence. We investigate the hysteresis and instability leading to the onset of current self-oscillations and analyze their properties depending on the circuit parameters. Our results provide a generic approach to the use of quantum regimes for controlling hysteresis and generating self-oscillations. Published by the American Physical Society 2024

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.