Abstract

Some nontrivial aspects of the magnetic and structural characterization of hard-magnetic nanoparticles are investigated. Dilute ensembles are well-described by mean-field theory, although there is an asymmetry between exchange and magnetostatic interaction fields. Corrections to the mean-field approximation are caused by cooperative effects and have the character of Onsager reaction fields, which are much stronger in micromagnetism than in atomic-scale magnetism. The slow dynamics of zero-field-cooled (ZFC) magnetization curves is strongly affected by the particles′ magnetic anisotropy, which reduces the corresponding energy-barrier height from 25 to 19.1 kBT.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.