Abstract

When confronted with poor oxygenation, cells adapt by activating survival signaling pathways, including the oxygen-sensitive transcriptional regulators called hypoxia-inducible factor alphas (HIF-αs). We report here that HIF-1α also regulates the life cycle of Epstein-Barr virus (EBV). Incubation of EBV-positive gastric carcinoma AGS-Akata and SNU-719 and Burkitt lymphoma Sal and KemIII cell lines with a prolyl hydroxylase inhibitor, L-mimosine or deferoxamine, or the NEDDylation inhibitor MLN4924 promoted rapid and sustained accumulation of both HIF-1α and lytic EBV antigens. ShRNA knockdown of HIF-1α significantly reduced deferoxamine-mediated lytic reactivation. HIF-1α directly bound the promoter of the EBV primary latent-lytic switch BZLF1 gene, Zp, activating transcription via a consensus hypoxia-response element (HRE) located at nt -83 through -76 relative to the transcription initiation site. HIF-1α did not activate transcription from the other EBV immediate-early gene, BRLF1. Importantly, expression of HIF-1α induced EBV lytic-gene expression in cells harboring wild-type EBV, but not in cells infected with variants containing base-pair substitution mutations within this HRE. Human oral keratinocyte (NOK) and gingival epithelial (hGET) cells induced to differentiate by incubation with either methyl cellulose or growth in organotypic culture accumulated both HIF-1α and Blimp-1α, another cellular factor implicated in lytic reactivation. HIF-1α activity also accumulated along with Blimp-1α during B-cell differentiation into plasma cells. Furthermore, most BZLF1-expressing cells observed in lymphomas induced by EBV in NSG mice with a humanized immune system were located distal to blood vessels in hypoxic regions of the tumors. Thus, we conclude that HIF-1α plays central roles in both EBV’s natural life cycle and EBV-associated tumorigenesis. We propose that drugs that induce HIF-1α protein accumulation are good candidates for development of a lytic-induction therapy for treating some EBV-associated malignancies.

Highlights

  • Epstein-Barr virus (EBV) is a ubiquitous human gamma herpesvirus that infects over 90% of the world’s population

  • Most adults throughout the world are infected with Epstein-Barr virus (EBV), a human herpesvirus frequently associated in a latent state with some cancers of epithelial and Bcell origin such as nasopharyngeal carcinoma and Burkitt lymphoma, respectively

  • We show here that HIF-1α, a cellular transcription factor that accumulates in cells when deprived of normal levels of oxygen, can induce lytic EBV infection

Read more

Summary

Introduction

Epstein-Barr virus (EBV) is a ubiquitous human gamma herpesvirus that infects over 90% of the world’s population. EBV establishes a life-long latent infection in a tiny subset of its host’s memory B cells where its genome is maintained as an episome that replicates in synchrony with the host’s cellular DNA (reviewed in [1,2]). Latent EBV infection is associated with some malignancies in humans, including nasopharyngeal carcinoma (NPC), some gastric cancers (GC), a subset of Burkitt lymphomas (BL), diffuse large B-cell lymphomas (DLBCL), and post-transplant lymphoproliferative diseases (PTLD) (reviewed in [1,4,5]). Several EBV-encoded latency proteins and miRNAs have been shown to contribute to cell transformation and tumorigenesis [1,3]

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call