Abstract
Tendon, a connective tissue structure, serves the crucial role of transmitting force between muscles and bones. However, tendon injury repair continues to pose a significant challenge in clinical settings. In this study, we utilized single-cell RNA sequencing to delve into the cell populations and signaling pathways that are integral to tendon healing. Our findings suggest that hypoxia plays a pivotal role in activating macrophages, stimulating endothelial cell migration, and fostering fibroblast proliferation. Based on these insights, we have developed a PCL scaffold coated with DFOA, which effectively mimics a hypoxic environment to enhance tendon tissue regeneration. Furthermore, the PCL-DFOA scaffolds exhibit exceptional ability in promoting macrophage polarization and angiogenesis. This research offers a therapeutic strategy that harnesses the regenerative power of hypoxia to accelerate and optimize tendon healing processes.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have