Abstract

BackgroundAs one of the most common forms of cancer, non-small cell lung carcinoma (NSCLC), is characterized by oxygen deprivation (hypoxia). The transcription factor hypoxia-inducible factor (HIF)-1α is a major mediator which responds hypoxia and regulates many contributing factors. The various modes of hypoxia regulation are frequently the focus of research studies. With reference to previous published research, we hypothesized that hypoxia promotes the growth and angiogenesis of NSCLC via the Akt-PDK1-HIF1α-YKL-40 pathway, and verified it.MethodsWe mainly investigated changes in related factor expression between differently treated CL1-5 cells. We carried out overexpression and underexpression transfection, Western blot, rt-PCR and ELISA, and observed cellular biological behaviors by CCK-8 migration and invasion assay, and tube formation assay.ResultsA hypoxic environment significantly increased the phosphorylation of Akt and PDK1 in mitochondria. The hypoxia-induced accumulation of p-Akt in mitochondria activated PDK1 phosphorylation, promoted the expression of HIF1α, and the expression of YKL-40. The overexpression of YKL-40 promoted the proliferation, migration, invasion and tubule formation of CL1-5 cells.ConclusionsA hypoxic tumor microenvironment can promote the expansion and angiogenesis of NSCLC cells through the Akt-PDK1-HIF1α-YKL-40 pathway. This may provide a new mechanism and potential interventional target for anti-vascular lung cancer therapy.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.